V leads to the formation of higher molecular weight products in addition to the methyl ether VI.

The formation and destruction of the dienone V has been studied spectrophotometrically at $10^{-4}-$ $10^{-5} M$ concentrations of the ions IVa and IVb. At these concentrations competition by aryloxide for the dienone V is negligible and the primary source of destruction of V is the excess base necessary to insure complete ionization of the phenols used. Thus, in methanol with 0.01 to $0.1 M$ methoxide ion, an absorption at $274 \mathrm{~m} \mu$, attributed to V, with an ϵ of 17,000 to 20,000 has been observed to increase with time and then to disappear. The resulting solution has the same ultraviolet spectrum as that of the basic salt of the methyl ether VI. From the spectral kinetics the rate of decay of the dienone V was found to be first order in both V and in methoxide ion, the second order rate constant being $9.3 \times 10^{-2} 1 .-\mathrm{mole}^{-1} \mathrm{sec} .^{-1}$ at 25.0°. Further, the first order rate constants for the formation of dienone V via the ion IV are 5.09 $\times 10^{-3} \mathrm{sec} .^{-1}$ for the iodide and $1.10 \times 10^{-3} \mathrm{sec} .^{-1}$ for the bromide, the latter value agreeing with the titrimetric rate constant.

The dienone V is formed more rapidly and is nore stable in t-butyl alcohol than in methanol. Even with t-butyl alcohol as solvent, however, attempts to isolate the dienone under preparative conditions have so far been unsuccessful.

(4) National Science Foundation Predoctoral Fellow, $1953-1955$,
1956-1957.
DEPARTMENT OF CHEMISTRY
UNIVERSITY OF CAI,IFORNIA
LOSANGELES 24, CALIFORNIA
RECEIVED NOVEMBER 8,1956
S. WINSTEIN
R. BAIRD

Sir:
In the paper ${ }^{1}$ by Muller, Lauterbur and Goldenson on the nuclear inagnetic resonance spectra of phosphorus compounds, an equation was given for relating the amount of unbalance in the p electrons with the chemical shift of phosphorus in those compounds in which the phosphorus atom is covalently bonded to three neighboring atoms. Unfortunately, this equation does not fit the available information presented in an earlier publication ${ }^{2}$ and a recent paper ${ }^{3}$ from our laboratories. I lave modified Equation 4 of Muller, et al., to read

$$
\begin{equation*}
D^{\prime}=\left[(3 / 4)-\beta^{2}\right] \beta^{2}(1-\epsilon) \tag{1}
\end{equation*}
$$

This equation is based on the assumption that the wave function asymmetry of the P atom ir1 the PX_{3} nolecule is zero for both $\mathrm{p}^{3}\left(\beta^{2}=0\right)$ and pure sp^{3} ($\beta^{2}=3 / 4$), so that the asymmetry is a maximum for a bond angle of $98^{\circ} 13^{\prime}$.

Table I shows the values of $\mathrm{X}-\mathrm{P}-\mathrm{X}$ angles I have used for the computation of β^{2} (Equation 2,

[^0](2) H. S. Gutowsky and D. W. McCall, J. Chem. Phys., 22, 162 (1954).
(3) J. R. Van Wazer, C. F. Callis, J. N. Shoulery and R. C. Jones, This Juurnal, 78, 5715 (1956).

Ref. 1) and herice D (Equation 4, Ref. 1) and D^{\prime} (Equation 1).

Table I

	Values of X-P-X Angles
\mathbf{x}	Angle in degrees
H	93^{1}
Cl	100.5 ± 1.5^{4}
Br	101.5 ± 1.5^{4}
1	102 ± 2^{4}
F	104 ± 4^{4}

A semilogarithmic plot of chenical shift plus 230 versus D^{\prime} is well represented by a straight line, which yields equation (2) relating the measured chemical shift, δ, with D^{\prime}

$$
\begin{equation*}
\delta=-230+\left(29.0 \times 10^{3} e^{-46.0 D^{\prime}}\right) \tag{2}
\end{equation*}
$$

where δ is the chemical shift of the phosphorus nu1clear magnetic resonance peak referred to 85% phosphoric acid in p.p.m. of the applied magnetic field and defined as $\delta=H_{\text {sample }}-H_{\text {standard }} /$ $H_{\text {standard }} \times 10^{6}$. D^{\prime} is the number of unbalanced p electrons in the phosphorus valence shell and defined by Equation 1.

In Table II, I have listed measured chemical shifts and compared them with values calculated from Equation 5 of Muller, et al., and values calculated fronı Equation 2.

Table II
Comparison of Measured and Calculated Phosphorus Nuclear Magnetic Resonance Shifts

Chemical shift
relative to orthophosphoric acid
relative to orthophosphoric acid
Calculated from
equation 4 of Calculated from

		relative to orthophosphoric acid Calculated from equation 4 of Muller, el al.	Calculated from equation 2 above
Molecule	Measured	$+238^{3}$	+240

I have used Equations 1 and 2, the chemical shift $^{3}(\delta=+62$ p.p.m. $)$, the Pauling electronegativities of P and C , and Equations 2 and 3 of Reference 1 to compute the bond angle of trimethylphosphine. The calculated bond angle is 102.5° as compared to the measured value of 100° $\pm 4^{\circ} .^{5}$ Since Equations 1 and 2 fit all the available data including phosphorus trifluoride and trimethylphosphine, they should be substituted for Equations 4 and 5 , respectively, in the article by Muller, et al.
(4) P. W. Allen and L. E. Sutton. Acta Cryst. 3, 46 (1950).
(5) H. D. Springall and L. O. Brockway. This Journal, 60, 990 (1938).

Monsanto Chemical Company
Inorganic Chemicals Division
Dayton 7, Ohio
Received October 12, 1956

CONCERNING THE SYMMETRY OF BENZENEPOSITIVE ION COMPLEXES; UNPOSITIVE THIRD GROUP IÓNS
Sir:
The nature of benzene-positive ion complexes has.implications as to the mechanism of nucleo-

[^0]: (1) N. Muller, P. C. Lauterbur and J. Goldenson, This Journal, 78, 3557 (1956).

